Isotopic labeling experiments that elucidate the mechanism of DNA strand cleavage by the hypoxia-selective antitumor agent 1,2,4-benzotriazine 1,4-di-N-oxide.

نویسندگان

  • Xiulong Shen
  • Anuruddha Rajapakse
  • Fabio Gallazzi
  • Venkatraman Junnotula
  • Tarra Fuchs-Knotts
  • Rainer Glaser
  • Kent S Gates
چکیده

The 1,2,4-benzotriazine 1,4-dioxides are an important class of potential anticancer drugs that selectively kill the low-oxygen (hypoxic) cells found in solid tumors. These compounds undergo intracellular one-electron enzymatic reduction to yield an oxygen-sensitive drug radical intermediate that partitions forward, under hypoxic conditions, to generate a highly reactive secondary radical that causes cell killing DNA damage. Here, we characterized bioreductively activated, hypoxia-selective DNA-strand cleavage by 1,2,4-benzotriazine 1,4-dioxide. We found that one-electron enzymatic activation of 1,2,4-benzotriazine 1,4-dioxide under hypoxic conditions in the presence of the deuterium atom donor methanol-d4 produced nondeuterated mono-N-oxide metabolites. This and the results of other isotopic labeling studies provided evidence against the generation of atom-abstracting drug radical intermediates and are consistent with a DNA-damage mechanism involving the release of hydroxyl radical from enzymatically activated 1,2,4-benzotriazine 1,4-dioxides.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Initiation of DNA strand cleavage by 1,2,4-benzotriazine 1,4-dioxide antitumor agents: mechanistic insight from studies of 3-methyl-1,2,4-benzotriazine 1,4-dioxide.

The antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, TPZ, 1) gains medicinal activity through its ability to selectively damage DNA in the hypoxic cells found inside solid tumors. This occurs via one-electron enzymatic reduction of TPZ to yield an oxygen-sensitive drug radical (2) that leads to oxidatively generated DNA damage under hypoxic conditions. Two possible mechani...

متن کامل

Redox-activated, hypoxia-selective DNA cleavage by quinoxaline 1,4-di-N-oxide.

Quinoxaline 1,4-dioxide (4) is the historical prototype for modern heterocyclic N-oxide antitumor agents such as 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, 1) and 3-amino-2-quinoxalinecarbonitrile 1,4-dioxide (11). Early experiments in bacterial cell lines suggested that enzymatic, single-electron reduction of quinoxaline 1,4-dioxides under low-oxygen (hypoxic) conditions leads to D...

متن کامل

DNA strand cleaving properties and hypoxia-selective cytotoxicity of 7-chloro-2-thienylcarbonyl-3-trifluoromethylquinoxaline 1,4-dioxide.

The heterocyclic N-oxide, 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine, 1), shows promising antitumor activity in preclinical studies, but there is a continuing need to explore new compounds in this general structural category. In the work described here, we examined the properties of 7-chloro-2-thienylcarbonyl-3-trifluoromethylquinoxaline 1,4-dioxide (9h). We find that 9h causes redox...

متن کامل

Synthesis, Crystal Structure, and Rotational Energy Profile of 3-Cyclopropyl-1,2,4-benzotriazine 1,4-Di-N-oxide.

1,2,4-Benzotriazine 1,4-di-N-oxides are potent antitumor drug candidates that undergo in vivo bioreduction leading to selective DNA damage in the low oxygen (hypoxic) cells found in tumors. Tirapazamine (TPZ) is the lead compound in this family. Here we report on the synthesis, crystal structure, and conformational analysis of a new analog, 3-cyclopropyl-1,2,4-benzotriazine 1,4-di-N-oxide (3). ...

متن کامل

Toward Hypoxia-Selective DNA-Alkylating Agents Built by Grafting Nitrogen Mustards onto the Bioreductively Activated, Hypoxia-Selective DNA-Oxidizing Agent 3-Amino-1,2,4-benzotriazine 1,4-Dioxide (Tirapazamine)

Tirapazamine (3-amino-1,2,4-benzotriazine 1,4-dioxide) is a heterocyclic di-N-oxide that undergoes enzymatic deoxygenation selectively in the oxygen-poor (hypoxic) cells found in solid tumors to generate a mono-N-oxide metabolite. This work explored the idea that the electronic changes resulting from the metabolic deoxygenation of tirapazamine analogues might be exploited to activate a DNA-alky...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical research in toxicology

دوره 27 1  شماره 

صفحات  -

تاریخ انتشار 2014